
Categories and Posers

by Theresa Ray of Tensor Information Systems, Inc.

Sponsored by Apple Computer, Inc.

Apple Developer Connection

Apple Worldwide Developer Relations Categories and Posers 2

Categories and Posers

by Theresa Ray of Tensor Information Systems, Inc.

Categories and posers are powerful mechanisms for extending and/or replacing the

behavior of classes for which you cannot update the source. These techniques are

essential tools that every WebObjects programmer should understand.

Why do you need categories and posers?

Object-oriented programming techniques have proven to be enormously beneficial for both programmers and

those financing the programs. By being able to create and easily distribute common logic into reusable classes,

applications are more robust, and are more quickly developed and deployed. Inherent to object-oriented

programming is a concept known as encapsulation. Encapsulation is best described as "providing a well-defined

interface to the users of a class, while hiding the implementation and behavior of that class from the user". In other

words, a header is provided which defines the method syntax and the order and class of the arguments for that

method (as well as useful documentation regarding the purpose of the method). But exactly how the developer

implements that method is NOT provided, nor is it supposed to be important to the user.

In the real world of programming, however, you may find that you need some extensions or enhancements made

to the provided classes. But without source code, what can you do to alter the behavior of the class? Subclasses are

the first, and preferred, option for extending or modifying the behavior of a class. For a subclass to extend or

modify the behavior of a class, you must message the subclass that implements the new behavior in place of the

parent class. For example, if you needed to extend the behavior of an NSArray, you could create a subclass called

TISNSArray that implements the new features. All applications requiring the extended behavior would have to

message the TISNSArray subclass.

There are times where this requirement is not feasible. For example, when an instance of an EOEditingContext

fetches, it returns an NSArray with the results. If you wanted, by default, to rely on behavior implemented in your

subclass (TISNSArray), there is no EOEditingContext method you can call which would put the results directly into

a TISNSArray instead of an NSArray. How can you overcome this obstacle?

How categories and posers work

Categories and posers are two options that allow you to extend or modify the behavior of any class in a more direct

manner than subclassing, but may only be implemented in Objective-C. Categories and posers are special kinds of

subclasses that merge themselves more seamlessly with the parent class. The parent class will directly exhibit the

extended or overridden behavior that is actually defined in the category or poser subclass.

For example, you could create a framework containing a category on NSString to add a method called

stringByRemovingWhitespace. Applications that link in the framework containing this category would be able to

successfully send the message stringByRemovingWhitespace to any instance of NSString. Similarly, if that same

framework included a class that posed as EOEditingContext and altered the behavior of the

initWithParentObjectStore: method, any initWithParentObjectStore: message would behave in the altered manner.

Apple Worldwide Developer Relations Categories and Posers 3

Both categories and posers should be well understood before an attempt is

made to use them in a production environment - particularly posers. Because

you are altering the behavior of a common class, categories and posers are powerful mechanisms

which can be essential tools for the programmer, but are inherently dangerous to the

unassuming.

Categories and posers are related in their capabilities. Both alter the behavior of the parent class, but categories

and posers provide different levels of control in their implementation. Categories are typically used to extend the

behavior of a class, and cannot message super. Posers can message super, and therefore are more powerful in their

abilities (particularly in extending or overriding a parent class's default behavior for a given method). Categories are

relatively safe to use as long as the technique and limitations are well understood. Posers can be much more

dangerous to implement due to their inherent wide-ranging effects and abilities.

Category details

Categories are defined explicitly on their parent class, and "just happen" when loaded (that is, you do not need to

make a special call in order to "activate" a category). There is no limit to the number of categories you may add to a

parent class, but each category class and method must have a different name. If you attempt to override the same

method or define methods with the same name in different categories on the same class, you will experience

runtime issues related to the order in which the conflicting classes or methods were loaded.

Categories can add new methods and override methods defined in the parent class they act on. Categories also

have access to ALL instance variables for the class (including private instance variables). Categories are

indistinguishable at runtime from their parent class, and any changes to the parent class methods are inherited by

all subclasses of the parent class.

Category methods can not message super (posers can), nor can they add any instance variables (the compiler will

catch any category attempt to add an ivar). If you need to add an instance variable, you need to use a regular

subclass instead of a category.

Because of their more restrictive nature (not being able to call super or add instance variables), categories are

relatively safe to implement, and are routinely used to add functionality to a class. However, it is dangerous to

attempt to add a category to a Root object, since class objects can perform instance methods defined in the root

class and Root objects have no superclass.

A category example

To illustrate an example of a implementing a category, if you wanted to create an NSString category you would

create a new class with a new name. This class is defined as a category on the parent class by using the syntax:

@interface NSString (FoundationExtensions)

In this example, the framework FoundationExtensions contains the new class (named NSStringCategories) which

implements the category methods. Any application which links in the FoundationExtensions framework will use

the category methods for NSString defined in NSStringCategories. Appendix I contains source code for an example

of a category. These categories were developed to provide convenience extensions to the Yellow Box NSString

class.

Apple Worldwide Developer Relations Categories and Posers 4

Poser details

Posers, too, must be a subclass of the class they're posing as. These posing subclasses stick

themselves in the class hierarchy between the parent "posed-as" class and all of its subclasses

(like so many spliced genes). The poser receives any sent messages first, and may or may not

message super (the beauty and danger of posing). Any subclasses inherit the new behavior

implemented by the poser. Posers cannot add instance variables. If you try to add an instance

variable, the compiler will not catch the attempt. You will get a runtime error, and the message is not always clear

that your poser's attempt to add an instance variable is the cause. Posers can add new methods, as well as override

or extend methods defined in the classes they are posing as.

In order to make your new subclass actually pose as the original class, you must use send the poseAsClass: or the

class_poseAs: method to the original class before any other messages are sent to the original class, and before any

instances of the original class are created. This may be accomplished in two ways. The first way is for your subclass

to implement the class method named load (the load message is sent to classes when they are added to the

Objective-C runtime). In your subclass's implementation of load, you would send the poseAsClass: message to self.

The second way is for all applications that want to implement the poser to send the poseAsClass: message to the

posing subclass from the application's main. For example the code:

 [EOEditingContextPoser poseAsClass: [EOEditingContext class]] ;

would cause the EOEditingContextPoser subclass to begin posing as EOEditingContext for all messages sent to the

EOEditingContext class and all instances of the EOEditingContext class for the entire application.

The second way - having each application explicitly specify the poser - is the recommended method, as it is the

most conservative and consequently the safest. If you use the first way - having the subclass pose in the load

method - there are many potential pitfalls. First, you cannot know for sure exactly when the load message will be

received. It is generally received before the initialize message, but the order in which load messages are sent to

classes is unspecified (and specifically, a class's superclass is not guaranteed to have its load method called before

the subclass receives the message.)

Second, the Foundation framework has classes and subsytems that depend on load being called before they are

fully functional. You may run into inter-dependency issues if you try to specify your poser in the load method.

Third, if you use the pose-in-load solution, you don't know for sure whether users of your framework are aware that

a poser is invoked. The load method was never intended to be a general initialization method. If you must have

your subclass pose "automatically", you should investigate sending the poseAsClass: message in the subclass's

initialize method instead of using the load method. There are cases, however, where no other option is available.

Pose-in-load should be an absolute, final resort if no other mechanism is possible.

A poser example

To create an EOEditingContext poser, create a new class with a new name. This class is defined as any usual

subclass of EOEditingContext. If you want to override or extend the posed-as class's methods, just implement them

in the new subclass. To override behavior completely, the new subclass would not message super. To extend

behavior, call the super's implementation of the same method and then execute your new functionality. Make sure

your application's main sends your subclass the poseAsClass: message. Appendix II contains source code for an

example of a poser. This poser was developed as a solution to the problem of snapshot retention after release of

the EOEditingContext instance. A thorough description of the problem is included in the Appendix.

Apple Worldwide Developer Relations Categories and Posers 5

Conclusion

Use of categories and posers can be useful to extend, enhance and improve the basic behavior of

a class. The casual use of both categories and posers is not recommended, as both have wide-

ranging effects. Creation of a subclass to add or override behavior of a parent class should always

be your first choice. There are purists who consider the entire topic of categories and posers as

"evil". However, both are necessary tools for a real-world programming environment, and

category methods in particular often make sense; they allow you to put methods "where they ought to be". I

strongly recommend that posers be used mainly as a debugging tool, and only as a last resort for production use,

while category methods can be used more openly but with caution.

Phone: 817-335-7770

E-mail: theresa@tensor.com

URL: http://www.tensor.com

Resources…

http://gemma.apple.com/techinfo/techdocs/enterprise/WebObjects
WebObjects Developer’s Guide

Enterprise Objects Framework Developer’s Guide

http://www.omnigroup.com/MailArchive/WebObjects

http://www.omnigroup.com/MailArchive/eof
http://www2.stepwise.com/cgi-bin/WebObjects/Stepwise/Sites
ftp://dev.apple.com/devworld/Interactive_Media_Resources

http://www.apple.com/developer
http://developer.apple.com/media
http://til.info.apple.com/

About the Author…

Theresa Ray is a Senior Software Consultant for Tensor Information Systems in Fort Worth, TX

(http://www.tensor.com) . She has programmed in OPENSTEP/Yellow Box (both WebObjects and AppKit

interfaces) on projects for a wide variety of clients including the U.S. Navy, the United States Postal Service, America

Online, and Lockheed-Martin. Her experience spans all versions of WebObjects from 1.0 to 4.0, EOF 1.1 to 3.0,

NEXTSTEP 3.1 to OPENSTEP 4.2, Rhapsody for Power Macintosh, and yellow-box for NT. In addition, she is an

Apple-certified instructor for WebObjects courses.

Tensor Information Systems is an Apple partner providing systems integration and enterprise solutions to its

customers. Tensor’s employees are experienced in all Apple technologies including OPENSTEP/Yellow Box,

NEXTSTEP, Rhapsody, EOF and WebObjects. Tensor also provides Apple-certified training in WebObjects, Oracle

consulting and training, as well as systems integration consulting on HP-UX. And Oracle.

You may reach Theresa by e-mail: theresa@tensor.com or by phone at (817) 335-7770.

http://www.tensor.com
http://til.info.apple.com/
http://developer.apple.com/media
http://www.apple.com/developer
ftp://dev.apple.com/devworld/Interactive_Media_Resources
http://www2.stepwise.com/cgi-bin/WebObjects/Stepwise/Sites
http://www.omnigroup.com/MailArchive/eof
http://www.omnigroup.com/MailArchive/WebObjects
http://gemma.apple.com/techinfo/techdocs/enterprise/WebObjects
http://www.tensor.com

Apple Worldwide Developer Relations Categories and Posers 6

Tips…

• Both categories and posers can access private instance variables defined in the

parent or original class.

• Use of public instance variables in categories is not the cleanest programming technique. If you can

get what you need via some public method, do that instead.

• Choose category method names carefully. If a new version of WebObjects implements a new method

with the same name as a method you defined, you will be overriding the new feature unwittingly. My

method names tend to be quite lengthy and nearly self-documenting. While this can be annoying to

use in an application, it adds some measure of assurance that the same name will not be chosen by

someone else in the future.

• Make sure the implementation for your categories and posers are robust, well tested, and not likely to

cause conflict with other classes or methods (either present or future).

• Remember that Java does not support categories or posers, so don't get married to this technique.

• Unless you are either VERY, VERY experienced in the topic of categories and posers or you are very

reckless, do NOT pose as any Root object (especially NSObject) or create categories on any Root

object.

• Several calls to poseAsClass: or class_poseAs: may cause a segmentation fault on the HP-UX platform.

Refer to Apple Bug reference #2176625 for more details (http://til.info.apple.com/) .

• If you use an Interface Builder palette which poses classes, you need to be careful if you save a nib file

that includes instances of those classes. Opening these nib files in an application which doesn't do

the same poses (or trying to open them in Interface Builder without that palette loaded) will cause an

unarchiving error. The error will say that the %PosedClassName was not loaded. The Yellow Box

runtime uses the preceding % for posed classes.

http://til.info.apple.com/

Apple Worldwide Developer Relations Categories and Posers 7

Appendix I

This appendix contains an example of a category used to provide convenience extensions to the

Yellow Box NSString class.

Here is the interface file for our category.

#import <Foundation/NSString.h>

@interface NSString (FoundationExtensions)
/** The (FoundationExtensions) category on NSString provides
convenience extensions to the Yellow Box NSString class.*/

• (NSString *) stringByRemovingWhitespace ;
/** Returns a copy of the receiver with all whitespace removed. */

@end

@interface NSMutableString (FoundationExtensions)
/** The (FoundationExtensions) category on NSMutableString provides
convenience extensions to the Yellow Box NSMutableString class.*/

• (void) replaceSubstring: (NSString *) aSubstring withString:
 (NSString *) aString ;
/** Replaces all instances of aSubstring within self with aString.*/

@end

Apple Worldwide Developer Relations Categories and Posers 8

Here is the implementation file for our category.

#import <Foundation/NSCharacterSet.h>
#import "TISNSStringCategories.h"

@implementation NSString (FoundationExtensions)

• (NSString *) stringByRemovingWhitespace
{
 NSMutableString *copy = [self mutableCopyWithZone: [self zone]]
;
 NSCharacterSet *wsCharSet = [NSCharacterSet
 whitespaceAndNewlineCharacterSet] ;
 NSRange r ;

 while ((r = [copy rangeOfCharacterFromSet: wsCharSet]).length >
 0)
 {
 [copy replaceCharactersInRange: r withString: @""] ;
 }

 return [copy autorelease] ;
}
@end

@implementation NSMutableString (FoundationExtenstions)

• (void) replaceSubstring: (NSString *) aSubstring withString:
 (NSString *) aString
{
 NSRange theRange = [self rangeOfString: aSubstring] ;

 while (theRange.length != 0)
 {
 [self replaceCharactersInRange: theRange withString: aString] ;
 theRange = [self rangeOfString: aSubstring] ;
 }
}
@end

Apple Worldwide Developer Relations Categories and Posers 9

Appendix II

This appendix contains an example of a subclass used to pose as an EOEditingContext. This

example is extensive, but provides a solution to a real-world problem. Posers should not be

invoked lightly, and so their implementation tends to be extensive. This appendix contains all

the pieces required to solve the problem at hand, and includes a poser, a category, and an example of the code

used to call the extensions built by the poser and the category. The problem being solved is relevant for

WebObjects versions 3.0 through 4.0.1, and is as follows:

Most applications use an optimistic locking mechanism when fetching information from a database. In optimistic

locking, when a row is fetched from a database for update, EOF makes a snapshot of that row. When saving updates

to that row, the attributes in the snapshot marked by EOModeler as "used for locking" are compared with the

values stored in the database at the time of the update. If any of the attributes have changed, EOF raises an

exception (because some other application has altered the row in the database between the time the row was

fetched for update and the time the update is being committed to the database). This is obviously an essential and

beneficial feature of EOF.

The problem arises when the instance of the EOEditingContext that fetched the rows is released - the snapshot is

NOT released. The EOF class responsible for maintaining snapshots does so across potentially many

EOEditingContexts. Just because one of the instances is released doesn't mean that all instances are finished with

the snapshot. The only way one can know when to garbage collect the snapshot is to have every instance of an

EOEditingContext register itself in a non-retaining global array in the userInfo of the EOObjectStoreCoordinator.

You can subsequently message every instance of an EOEditingContext to determine if a particular snapshot should

be released. If you did not periodically garbage collect snapshots, an application which runs in a 24x7 environment

for long periods of time without restarting could conceivably suck the entire database into memory.

This problem must be solved for WebObjects applications by use of a poser, since each session instance

automatically instantiates an EOEditingContext for use as the defaultEditingContext upon initialization. There is no

way to indicate that the Session should instantiate a subclass of EOEditingContext instead of the usual

EOEditingContext. The poser registers each editing context with the EOObjectStoreCoordinator. A category

method on the EOObjectStoreCoordinator completes the solution by traversing the list of editingContexts and

cleaning up any unused snapshots.

WebObjects applications should periodically call this category method to enforce deallocation of unused snapshots.

How often is periodically? The answer depends on how extensively your application fetches information at the

session level. In applications that have extensive database access, calling pruneObjectGraph after every ten or

twenty new requests to the site is prudent. For applications with more minimal database access, calling

pruneObjectGraph after every fifty sessions or so may be acceptable. You can determine the appropriate frequency

for your application by monitoring the memory used by your application over time, and analyzing how those

memory requirements are reduced after calling the pruneObjectGraph method. (Special thanks to Craig Federighi

for helping to architect this solution).

Apple Worldwide Developer Relations Categories and Posers 10

Here is the interface file for our poser. We define the poser the same way as any other subclass

of EOEditingContext.

#import <Foundation/NSObject.h>
#import <Foundation/NSValue.h>
#import <EOControl/EOEditingContext.h>
@interface EOEditingContextPoser: EOEditingContext
{ }
@end

Here is the implementation file for our poser.

#import <Foundation/NSArray.h>
#import <Foundation/NSDictionary.h>
#import <EOControl/EOEditingContext.h>
#import <EOControl/EOObjectStore.h>
#import <EOControl/EOObjectStoreCoordinator.h>

// Import the interface file for our poser - contained in a
// framework called EOControlExtensions

#import <EOControlExtensions/EOEditingContextPoser.h>
@implementation EOEditingContextPoser

// Enhance the behavior of the initWithParentObjectStore: method
// Get the default EOObjectStoreCoordinator, pull our list of editing
// contexts out of its userInfo (creating a list if none is present),
// then add ourself to the list hidden inside a non-retaining NSValue
// instance. When the NSValue object is added to the array, its retain
// count will be incremented, but self's will not.

- initWithParentObjectStore: (EOObjectStore *) anObjectStore
{
 if (self = [super initWithParentObjectStore: anObjectStore])
 {
 EOObjectStoreCoordinator *defaultCoordinator =
 [EOObjectStoreCoordinator defaultCoordinator] ;
 NSMutableDictionary *userInfo =
 (NSMutableDictionary *)[defaultCoordinator userInfo] ;
 NSMutableArray *editingContextList = [userInfo objectForKey:
 @"editingContextList"] ;
 NSValue *nonretainedSelf = [NSValue valueWithNonretainedObject:
 self] ;
 if (userInfo == nil)
 {
 userInfo = [NSMutableDictionary dictionaryWithCapacity: 1] ;
 [defaultCoordinator setUserInfo: userInfo] ;
 }
 if (editingContextList == nil)
 {
 editingContextList = [NSMutableArray array] ;
 [userInfo setObject: editingContextList forKey:
 @"editingContextList"] ;
 }
 [editingContextList addObject: nonretainedSelf] ;
 }
 return self ;
}
@end

Apple Worldwide Developer Relations Categories and Posers 11

As stated above, the poser itself is not a complete solution for this problem. The poser registers

each editing context with the EOObjectStoreCoordinator. A category method on

EOObjectStoreCoordinator completes the solution by traversing the list of editing contexts and

database contexts, and releasing any unused snapshots.

The interface file is:

#import <EOControl/EOObjectStoreCoordinator.h>

@interface EOObjectStoreCoordinator (EOControlExtensions)

- (void) pruneObjectGraph ;

@end

The implementation file is:

#import <Foundation/NSSet.h>
#import <Foundation/NSValue.h>
#import <EOAccess/EODatabase.h>
#import <EOAccess/EODatabaseContext.h>
#import <EOControl/EOEditingContext.h>
#import <EOControl/EOFault.h>
#import "EOObjectStoreCoordinatorCategories.h"

@implementation EOObjectStoreCoordinator (EOControlExtensions)

// Traverse the contents of the list of editing contexts built
// by the poser to build an NSSet of unused snapshots (use [ec
// registeredObjects] in combination with [EOFault isFault:] and
// [ec globalIDForObject:]). Now that you have the set, walk through
// theEODatabase instances and get the list of all globalIDs (call
// [[db snapshots] allKeys] to get the list). Subtract the sets
// to get the list of snapshots to be invalidated, and call
// [objectStoreCoordinator invalidateObjectsWithGlobalIDs:].

- (void) pruneObjectGraph
{
 NSMutableArray *editingContextList = [[self userInfo]
 objectForKey: @"editingContextList"] ;

 if ([editingContextList count] > 0)
 {
 NSMutableSet *ecGIDs = [NSMutableSet set] ,
 *dbGIDs = [NSMutableSet set] ;
 NSArray *coopObStores = [self cooperatingObjectStores] ;
 NSArray *allObjects ;
 int i,
 numEC = [editingContextList count],
 numCOS = [[self cooperatingObjectStores] count],
 j, numObjects ;
 EOGlobalID *gid;

Apple Worldwide Developer Relations Categories and Posers 12

 // We first must make an NSSet containing all the GIDs
 // referenced by all the non-EOFault objects in all
 // the editingContexts.

 for (i=0; i<numEC; i++)
 {
 NSValue *aValue ;
 EOEditingContext *ec ;
 id anObject ;

 aValue = [editingContextList objectAtIndex: I] ;
 ec = (EOEditingContext *)[aValue nonretainedObjectValue] ;
 allObjects = [ec registeredObjects] ;
 numObjects = [allObjects count] ;

 for (j=0; j<numObjects; j++)
 {
 anObject = [allObjects objectAtIndex: j] ;
 if (![EOFault isFault: anObject])
 {
 gid = [ec globalIDForObject: anObject] ;
 if (![ecGIDs containsObject: gid])
 [ecGIDs addObject: gid] ;
 }
 }
 }

 // At this point, the ecGIDs array contains all the global
 // Ids referenced by all the non-EOFault objects in all the
 // editing contexts. The next step is to build a similar list
 // for all the GIDs of all the snapshots in all the EODatabases.

 for (i=0; i<numCOS; i++)
 {
 EOCooperatingObjectStore *aCOS = [coopObStores
 objectAtIndex: I] ;
 if ([aCOS respondsToSelector: @selector(database)])
 {
 EODatabase *db = [(EODatabaseContext *)aCOS database] ;

 allObjects = [[db snapshots] allKeys] ;
 numObjects = [allObjects count] ;

 for (j=0; j<numObjects; j++)
 {
 gid = [allObjects objectAtIndex: j] ;
 if (![dbGIDs containsObject: gid])
 [dbGIDs addObject: gid] ;
 }
 }
 }

 // Now we have an NSSet with all the GIDs referenced by all the
 // editingContexts (ecGIDs) and an NSSet with all the GIDs
 // referenced by all the databases (dbGIDs). Subtract the ec list
 // from the db list and we have a list of GIDs that are not
 // "needed" by any object in any ec.

 [dbGIDs minusSet: ecGIDs] ;

Apple Worldwide Developer Relations Categories and Posers 13

 // Use the invalidateObjectsWithGlobalIDs: method to
 // dump all the referenced snapshots and refault any
 // EOs that depended on the snapshots. Since there
 // are no EOs depending on the snapshots, this has
 // the effect of purging all the unneeded snapshots
 // from memory.

 [self invalidateObjectsWithGlobalIDs: [dbGIDs allObjects]] ;

 }
 }

@end

Think different.http://www.apple.com/developer

Interactive Media Resources
Whether looking for technical guides from

industry experts or for market and industry

research reports to help make critical

business decisions, you’ll find them on the

Interactive Media Resources page.

Apple Developer Connection
Programs and Products
ADC programs and products

offer easy access to technical

and business resources for

anyone interested in devel-

oping for Apple platforms

worldwide. Apple offers three

levels of program participation

serving developer needs .

Membership Programs
Online Program—Developers gain access

to the latest technical documentation for

Apple technologies as well as business

resources and information through the

Apple Developer Connection web site.

Select Program—Offers developers the

convenience of technical and business

information and resources on monthly CDs,

provides access to prerelease software, and

bundles two technical support incidents.

Premier Program—Meets the needs of

developers who desire the most complete

suite of products and services from Apple,

including eight technical support incidents

and discounts on Apple hardware.

Standalone Products

Apple offers many standalone products that

allow developers to choose their own level

of support from Apple or enhance their

Select or Premier Program membership.

Choose from the following products and

begin enjoying the benefits today.

Developer Connection
Mailing—Subscribe to the

Apple Developer Connection

Mailing for the latest in

development tools, system

software, and more.

Technical Support—Pur-

chase technical support and

work directly with Apple’s

Worldwide Developer Tech-

nical Support engineers.

Apple Developer Connection News—
Stay connected to Apple and developer-

specific news by subscribing to our free

weekly e-mail newsletter, Apple Developer

Connection News. Each newsletter contains

up-to-date information on topics such as

Mac OS, Interactive Media, Hardware, Apple

News and Comarketing Opportunities.

Macintosh Products Guide
The most complete guide for Macintosh

products! Be sure to list your hardware and

software products in our free online

database!

Interactive Media
Resources Include:

Interactive Media
Guidebooks

Market Research Reports

Survival Guides—
Technical “How To”
Guides

Comarketing
Opportunities

Special Discounts

As Apple technologies such as QuickTime, ColorSync, and AppleScript
continue to expand Macintosh as the tool of choice for content creators and
interactive media authors, the Apple Developer Connection continues its
commitment to provide creative professionals with the latest technical and
marketing information and tools.

http://developer.apple.com/media
The ultimate source for creative professionals.
© 1998 Apple Computer, Inc. All rights reserved. Apple, the Apple logo, AppleScript, ColorSync, QuickTime, Macintosh and Mac OS are registered
trademarks of Apple computer, Inc. This ad was created using Macintosh personal computers.

Apple
Developer
Connection

Make the
Connection.

Join ADC today!
http://developer.apple.com/

programs

