
Porting Objective-C to Java

by Theresa Ray of Tensor Information Systems, Inc.

Sponsored by Apple Computer, Inc.

Apple Developer Connection

Porting Objective-C to Java

by Theresa Ray of Tensor Information Systems, Inc.

A quick reference guide to the major topics and tips involved converting an

Objective-C application or Framework to Java.

Many who have applications and/or frameworks written in Objective-C are finding it necessary to convert their

Objective-C applications and frameworks to Java. Java is a widely known and supported language. Many

programmers are already trained in Java, and in many cases it is becoming more time-consuming and costly to

retrain Java programmers to learn Objective-C programming syntax and techniques than it is to convert the

Objective-C applications and frameworks to Java.

Java applications can have as fast a response time as Objective-C applications, and are just as scalable as Objective-C

applications. Other than the investment of time and resources (which is recouped in the long run since more

programmers have the knowledge required to work on these applications and frameworks), there is little rationale

for not converting an application or framework from Objective-C to Java.

Contents and Prerequisites
This survival guide covers some of the topics relative to conversion of an Objective-C application or framework to

Java. It assumes that the application or framework was either written in WebObjects 4.0 or later, or has already

been successfully converted to WebObjects 4.0 or later. Refer to “ Converting an Existing WebObjects Application ”

for more information on converting a WebObjects application to WebObjects 4.0.

This guide also assumes that the reader is very familiar with the topics presented in the online documentation

“Using the Java Bridge” (found in

NEXT_ROOT/Documentation/Developer/YellowBox/TasksAndConcepts/ProgrammingTopics/JavaBridge/JavaBridg

e.html). The Java Bridge is a technology from Apple that allows communication between Objective-C objects and

Java objects. While the two languages are both object-oriented and fundamentally similar, there are enough

differences between them that the use of a bridge to allow communication between the different types of objects is

necessary.

Conversion Philosophies
There are two possible approaches to the conversion of an Objective-C application or framework to Java. Neither

approach is particularly better than the other is – the approach you choose depends on the complexity of your

application or framework and how quickly you need a converted solution available.

The first approach is to provide a Java wrapper for all of your Objective-C classes, and then port each class one by

one, changing the Objective-C side to use classWithName: to gain access to those classes already ported to Java

(allowing the Java Bridge to assist you in your conversion). Once a class has been ported, you would remove it

from the wrapper. If all you need is for other Java classes to be able to access your Objective-C methods, this might

be the right solution for you.

If you intend to fully convert your Objective-C code to Java code but your application or framework is large or

complex, you may want to choose this approach anyway because of the “divide and conquer” capability it provides.
Apple Worldwide Developer Relations Porting Objective-C to Java 1

http://developer.apple.com/techpubs/webobjects/System/Documentation/Developer/WebObjects/DeltaDoc/NewInWO4.02.html

This approach allows Java classes to have immediate access to your Objective-C classes. Then

you can take the time you need to convert the Objective-C classes to Java and to thoroughly test

each converted class. You would start with the peripheral classes, convert, test, approve, and

then move on to the core classes. This method is slower, but it allows you more control over the

conversion process. It enables testing and debug throughout the conversion process.

Note that for very large classes, you can even subclass them through the Java Bridge and port the class from

Objective-C to Java on a method-by-method basis in the subclass. At the end of the conversion process, your super

class is empty and you can just remove it.

Read the installation documentation “Using the Java Bridge” (found in

NEXT_ROOT/Documentation/Developer/YellowBox/TasksAndConcepts/ProgrammingTopics/JavaBridge/JavaBridg

e.html) for more information on creating Java wrappers for your Objective-C classes.

The second approach - conversion of the code directly from Objective-C to Java - may be more useful if you have

the less demanding time restrictions and/or the application or framework that needs conversion from Objective-C

to Java is not particularly large or complex. Using this technique, you would wait until the conversion and testing of

the application or framework is complete before releasing it. This is more of an “all or nothing” approach, but it has

the advantage of being much faster since you do not have to maintain three projects at once (an Objective-C

project, a wrapped Objective-C project and a Java project).

Java Syntax
In either case, at some point you will begin to convert Objective-C code to Java code. The most obvious difference

between the two languages is in the syntax. Java APIs are provided for all of Apple’s frameworks including the

Foundation Kit, AppKit, WebObjects, and Enterprise Objects. The Java method name in most cases is the same as

the Objective-C selector name after removing everything beyond the first colon.

For example, the Objective-C method

[myEditingContext saveChanges] ;

would map to the Java call

myEditingContext.saveChanges() ;

If an argument is required, just place it within the parentheses. For example, the Objective-C method

[myEditingContext insertObject: newCustomer] ;

would be replaced with the Java call

myEditingContext.insertObject(newCustomer) ;

Multiple arguments in Java syntax are placed successively within the parenthesis and separated by commas.

Remember that the Java method by default is the Objective-C selector name removing everything after the first

colon. Therefore the Objective-C method

[myApplication pageWithName: @”Foo” inContext:
 myContext] ;
Apple Worldwide Developer Relations Porting Objective-C to Java 2

would map to the Java call

myApplication.pageWithName(“Foo”, myContext) ;

Nested messaging is accomplished in Java by separating the calls with a “.” – for example the

Objective-C code

[[mySession defaultEditingContext] insertObject: myObject];

would be replaced by the Java calls

mySession.defaultEditingContext().insertObject(myObject) ;

Memory Management and Initialization
A major difference between Objective-C code and Java code is that in Objective-C code, the programmer is

responsible for retaining any persistent object references, and releasing all objects that are no longer necessary. In

other words, the programmer is responsible for explicitly managing memory using the retain, release and

autorelease selectors (see the WebObjects Survival Guide on Memory Management for more information on

Objective-C memory management).

In Java, unused objects are automatically garbage collected and the programmer need not concern himself/herself

with the details of memory management. One exception is if you create a new thread in Java, and that thread

manipulates some objects with Objective-C counterparts. In that case, you must explicitly create an autorelease

pool at the beginning of the thread, and remove it at the end of the thread.

Allocation and initialization of objects differs between Java and Objective-C. In Objective-C, you create objects with

alloc and initialize them with class initialization methods such as init. In Java, you create objects with new and

initialize them with the class's constructor.

For example, to create an instance of the Foo class in Objective-C you would write

someObject = [[Foo alloc] init] ;

while the same code in Java would be

someObject = new Foo();

In Objective-C, initialization methods are instance methods, applied to newly created objects. In Java, constructors

are not used in the same way as instance methods. Therefore, the Objective-C initialization method would become

the Java constructor method. If you have multiple initialization methods in Objective-C (i.e initWithName: and

initWithDefaultAdministrator), you will need to convert these two methods into two constructors. For example:

- (id) initWithName: (NSString *) aName
{
 self = [super init] ;
 name = [aName retain] ;
 return self ;
}

Apple Worldwide Developer Relations Porting Objective-C to Java 3

ftp://dev.apple.com/devworld/Interactive_Media_Resources/WebObjects_Memory_Mgmt.pdf.hqx

and

- (id) initWithDefaultAdministrator
{
 self = [super init] ;
 name = [[NSString stringWithString: @”Tom Jones”]
 retain] ;
 return self ;
}

might become the Java methods:

public SomeClass ()
{
 super() ;
 name=”Tom Jones” ;
}

and

public SomeClass (String aName)
{
 super() ;
 name=aName;
}

If you had created two initializers that took the same argument types, you would not be able to accommodate both

initializers with constructors. Instead, you might try creating a Java “cover” method that exposes the initialization

methods as instance methods rather than constructors and adding a custom pure Java constructor such as:

public Foo (String myString, boolean isPathName)
{
 if (isPathName)
 {
 this.initWithPathName(myString);
 }
 else
 {
 this.initWithString(myString);
 }
}

Conversion Tips
When converting your Objective-C classes to Java, keep these tips in mind:

When converting custom classes from an Enterprise Object Model, you might want to begin by opening the model

in EOModeler and choosing the “Generate Java Files…” option from the “Property” menu. This will create a

skeleton class in Java containing the constructor method and accessor methods for all your public variables (those

marked with class properties in EOModeler). You can then begin to add in any customized behavior you may have

added to the class, converting the code from Objective-C to Java as you go. Remember that this technique only

creates the code for one class at a time, so this mechanism fits nicely if you choose the “divide and conquer”

strategy for conversion.
Apple Worldwide Developer Relations Porting Objective-C to Java 4

In Objective-C, it's possible for an instance method to have the same name as a class method,

while in Java, class (static) and instance methods share the same name space. Therefore, if an

Objective-C class has methods -foo and +foo , you must change at least one of them to a

different name in Java.

Java doesn’t use pointers, while Objective-C (like C and C++) does. Therefore, you will need to change your code

if the Objective-C method you are converting uses pointers. There are Java equivalents for all object pointers, but

pointers such as int* or id* or void* will not work. The Objective-C method must be changed to remove these

references.

Objective-C allows you to message null objects, but bridged Java does not. You may need to add extra checks to

your code to ensure that an exception does not occur. If you add these checks as you port the code, you may find

that it makes debugging easier later on.

Don’t try to catch an exception if you don’t intend to at least log the exception. You will find that it is very hard to

track what is going wrong. You might also find that the Thread.dumpStackTrace() call is useful when debugging

your application or framework.

Static initializers require you to catch exceptions in them. It is possible that an exception (RuntimeException) can

be raised in a static initializer and these, too, are hard to track. When in doubt, catch (Exception e) in any static

initializer that could raise even just a RuntimeException.

Starting Java with the verbose option for loading classes will help you track down any problems that you might have

in your static initialization routines.

In Java, you cannot do anything before calling super() in a public initializer. You may have to change your

initialization scheme if your Objective-C class required action before messaging the super class.

If you pass a struct as an argument to a Objective-C method, you will need to decide how to convert these under

Java. You can either split out the fields or you can convert the struct to a class. If you convert the struct to a class,

you may need to write some native methods that convert between the class on the Java side and a struct on the

Objective-C side automatically.

All integer values in Java are signed. Try to avoid unsigned in Objective-C if possible, because you will have to

promote them to the next larger size in Java (especially unsigned long which would have to be promoted to Java

long which is 64 bits - inefficient on most processors).

The JavaBrowser Tool can be very useful when mapping Objective-C to Java methods during conversion, or to see

how Apple has converted Objective-C methods to Java.

If any of your hybrid Java objects implements finalize() (the method called by the garbage collector before

deallocating your object), then you also have to call super.finalize() to avoid potential memory leaks. Also, you

should not do anything in a finalize method that could result in a method invocation across the bridge.

When instantiating a wrapped or hybrid object, simply checking for null upon return from the constructor methods

is not enough. You should always use a try/catch statement to detect an instantiation error by throwing an

exception.
Apple Worldwide Developer Relations Porting Objective-C to Java 5

Objective-C categories that were originally created on classes that you do not own (such as

Foundation) can be ported to Java by creating a “helper” class that is a subclass of the original

class. You would then call the helper methods from there. If you did own the original class, any

categories can just be pulled back into the original class.

If you should happen to have a poser in an application or framework that you are converting from Objective-C to

Java, there is no Java equivalent of a poser. However, WebObjects 4.5 has added API to let you insert your own

subclasses for many crucial classes of WebObjects and EOF, hopefully removing the need of posing as.

To keep the performance of your converted application or framework high, avoid the + operator on String as this

is the biggest performance hit. Avoid chaining calls as much as you would in Objective-C. Avoid going back and

forth through the Java bridge as well. If it makes sense, stay in the Java side for whole methods at a time. Use

NSArray instead of Vector and use NSDictionary instead of Hashtable as much as possible since they are faster and

fit better in the bridged APIs.

Read the online documentation “ Debugging a WebObjects Application ” for tips on debugging Java and mixed-

language applications.

Read the online documentation “ Mixing Languages in an Application ” for additional information about creating a

project with both Java and Objective-C classes.

Read the online documentation “ Deployment and Performance Issues ” for information about tuning your

application for the best possible performance.

Conclusion
With a well-organized plan of attack, conversion of an application or framework from Objective-C to Java will not be

a trip to the torture chamber. The Java Bridge allows you to convert your application or framework at the speed

that makes sense for your situation, testing and debugging every step of the way.

Resources…

http://developer.apple.com/techpubs/webobjects

WebObjects Developer’s Guide

Enterprise Objects Framework Developer’s Guide

Enterprise Objects Framework Tools and Techniques (online with developer release)

http://www.omnigroup.com/MailArchive/WebObjects

http://www.omnigroup.com/MailArchive/eof

http://www2.stepwise.com/cgi-bin/WebObjects/Stepwise/Sites

ftp://dev.apple.com/devworld/Interactive_Media_Resources

http://www.apple.com/developer

http://developer.apple.com/media

http://til.info.apple.com/

Acknowlegments
Apple Worldwide Developer Relations Porting Objective-C to Java 6

http://developer.apple.com/techpubs/webobjects/System/Documentation/Developer/WebObjects/DevGuide/DebuggingTOC.html
http://developer.apple.com/techpubs/webobjects/System/Documentation/Developer/WebObjects/Topics/MixingLanguages.html
http://developer.apple.com/techpubs/webobjects/System/Documentation/Developer/WebObjects/DevGuide/Deployment.html
http://developer.apple.com/techpubs/webobjects
http://www.omnigroup.com/MailArchive/WebObjects
http://www.omnigroup.com/MailArchive/eof
http://www2.stepwise.com/cgi-bin/WebObjects/Stepwise/Sites
ftp://dev.apple.com/devworld/Interactive_Media_Resources
http://www.apple.com/developer
http://developer.apple.com/media
http://til.info.apple.com/

Special thanks to Francois Jouaux and Mai Nguyen of Apple Computer, Inc. for their technical

expertise and assistance in preparing this guide.

About the Author…

Theresa Ray is a Senior Software Consultant for Tensor Information Systems in Fort Worth, TX

(http://www.tensor.com) . She has programmed in OPENSTEP (both WebObjects and AppKit interfaces) on projects

for a wide variety of clients including the U.S. Navy, the United States Postal Service, America Online, and Lockheed-

Martin. Her experience spans all versions of WebObjects from 1.0 to 4.0, EOF 1.1 to 3.0, NEXTSTEP 3.1 to

OPENSTEP 4.2, Rhapsody for Power Macintosh, and yellow-box for NT. In addition, she is an Apple-certified

instructor for WebObjects courses.

Tensor Information Systems is an Apple partner providing systems integration and enterprise solutions to its

customers. Tensor’s employees are experienced in all Apple technologies including OPENSTEP, NEXTSTEP,

Rhapsody, EOF and WebObjects. Tensor also provides Apple-certified training in WebObjects, Oracle consulting

and training, as well as systems integration consulting on HP-UX. And Oracle.

You may reach Theresa by e-mail: theresa@tensor.com or by phone at (817) 335-7770.
Apple Worldwide Developer Relations Porting Objective-C to Java 7

http://www.tensor.com

Think different.http://www.apple.com/developer

Interactive Media Resources
Whether looking for technical guides from

industry experts or for market and industry

research reports to help make critical

business decisions, you’ll find them on the

Interactive Media Resources page.

Apple Developer Connection
Programs and Products
ADC programs and products

offer easy access to technical

and business resources for

anyone interested in devel-

oping for Apple platforms

worldwide. Apple offers three

levels of program participation

serving developer needs .

Membership Programs
Online Program—Developers gain access

to the latest technical documentation for

Apple technologies as well as business

resources and information through the

Apple Developer Connection web site.

Select Program—Offers developers the

convenience of technical and business

information and resources on monthly CDs,

provides access to prerelease software, and

bundles two technical support incidents.

Premier Program—Meets the needs of

developers who desire the most complete

suite of products and services from Apple,

including eight technical support incidents

and discounts on Apple hardware.

Standalone Products

Apple offers many standalone products that

allow developers to choose their own level

of support from Apple or enhance their

Select or Premier Program membership.

Choose from the following products and

begin enjoying the benefits today.

Developer Connection
Mailing—Subscribe to the

Apple Developer Connection

Mailing for the latest in

development tools, system

software, and more.

Technical Support—Pur-

chase technical support and

work directly with Apple’s

Worldwide Developer Tech-

nical Support engineers.

Apple Developer Connection News—
Stay connected to Apple and developer-

specific news by subscribing to our free

weekly e-mail newsletter, Apple Developer

Connection News. Each newsletter contains

up-to-date information on topics such as

Mac OS, Interactive Media, Hardware, Apple

News and Comarketing Opportunities.

Macintosh Products Guide
The most complete guide for Macintosh

products! Be sure to list your hardware and

software products in our free online

database!

Interactive Media
Resources Include:

Interactive Media
Guidebooks

Market Research Reports

Survival Guides—
Technical “How To”
Guides

Comarketing
Opportunities

Special Discounts

As Apple technologies such as QuickTime, ColorSync, and AppleScript
continue to expand Macintosh as the tool of choice for content creators and
interactive media authors, the Apple Developer Connection continues its
commitment to provide creative professionals with the latest technical and
marketing information and tools.

http://developer.apple.com/media
The ultimate source for creative professionals.
© 1998 Apple Computer, Inc. All rights reserved. Apple, the Apple logo, AppleScript, ColorSync, QuickTime, Macintosh and Mac OS are registered
trademarks of Apple computer, Inc. This ad was created using Macintosh personal computers.

Apple
Developer
Connection

Make the
Connection.

Join ADC today!
http://developer.apple.com/

programs

	Contents and Prerequisites
	Conversion Philosophies
	Java Syntax
	Memory Management and Initialization
	Conversion Tips
	Conclusion
	Resources…
	Acknowlegments
	About the Author…

