
Design for Reuse

by Theresa Ray of Tensor Information Systems

Sponsored by Apple Computer, Inc.
Worldwide Developer Relations Group

Design for Reuse
by Theresa Ray of Tensor Information Systems

On-line Technical Documentation

One of the best resources for all WebObjects programmers, regardless of experience
level, is Apple’s on-line technical documentation. The documentation provided there,
specifically the section on Creating Reusable Components, has an excellent introduc-
tion to the topic of design for reuse and the terminology necessary for continued
discussions. This survival guide assumes that the reader is familiar with the informa-
tion presented there. Apple’s technical documentation can be found at http://
developer.apple.com/techpubs/enterprise/WebObjects/WebObjectsTOC.html

Reuse

One of the biggest challenges facing today’s programmers is the issue of “design for
reuse”. Every application has a specific set of requirements and goals which requires
some customized code, but starting the code from scratch on every project is not the
best use of your company’s available resources. Obviously, the average application will
consist of both reusable and application-specific code, but how do you determine the
best way to segment your code? The best application design starts with a good project
architecture. Design patterns, such as the Model-View-Controller design pattern, can
help you structure your application in the most efficient way.

Model-View-Controller Design Pattern

Design patterns, such as Model-View-Controller, help to categorize the code being
written. The Model-View-Controller design pattern separates classes into one of three
categories – model, view or controller.

Model

The model classes contain your application-independent business logic and tools.
Applications storing information in a database have a set of classes corresponding to
the entities defined in the database. These classes, known collectively as an object
model, include logic such as validation rules and formatting of data. Any application

Apple Worldwide Developer Relations Design for Reuse 2

http://developer.apple.com/techpubs/enterprise/WebObjects/WebObjectsTOC.html
http://developer.apple.com/techpubs/enterprise/WebObjects/WebObjectsTOC.html

3 Apple
using that database uses the object model and is therefore subject to a single set of rules
for storage and manipulation of data. It does not matter whether it is a command-line
Yellowbox/OpenStep application, an NT-deployed client-server application developed with
Appkit, or a WebObjects application. Any type of application developed can use the object
model framework developed.

For example, you want to store a customer’s name and address information in a table
known as CustNameAddress. Your object model will have an entity which corresponds
with the database entity. In addition to the traditional accessor methods required by this
class, you may include the following method:

public Exception validateForSave() {
if (firstName == null) {

System.err.println(“Input
Error: The first name field may not
contain numeric data.”);
return new Exception();
}

if (stringManipulator.hasNumericIn(firstName)) {
System.err.println(“Input
Error: The first name field may not
contain numeric data.”);
return new Exception();
}

// Do the same thing for all other required fields
return null;
}

or, in Objective-C terminology:

- (NSException *) validateForSave {
if (!firstName || [firstName isEqual:@””])

return [NSException
exceptionWithName:@”Input Error”
reason:@”The first name field is
required.” userInfo:nil];

if ([stringManipulator
hasNumericIn:firstName])

return [NSException
exceptionWithName:@”Input Error”
reason:@”The first name field may not
contain numeric data.” userInfo:nil];

// Do the same thing for all other
required fields
return nil;
}

 Worldwide Developer Relations Design for Reuse

This method is called during saveChanges or tryToSaveChanges and is covered in
depth in the EOF documentation. In the case presented here, if no value is entered for
the firstName field, an exception is raised (the application must include an exception
handler to appropriately deal with the raised error, but by including a useful reason in
the exception, that reason may be shown to the user directly). Similar code would exist
for all required fields in the entity. By storing the validation logic in the object model,
all applications are guaranteed to use the same set of business rules in updating the
database, since the validateForSave method is called in each case.

Notice the second if statement – if ([stringManipulator hasNumericIn:firstName]).
The method hasNumericIn: is not a standard NSString method, nor was it defined in
the CustNameAddress entity (self was not the recipient of the message). Instead of
writing the specific code to verify that firstName did not contain any numeric charac-
ters in the validateForSave method or even within the object model, that method can
be defined in a set of classes independent of the object model and might include other
methods such as hasCharacterIn:, etc.

This other set of classes would exist as a company-specific framework similar to the
Foundation framework provided by Apple, and should be made available to any
application on the entire system. Instead of writing code to check for a numeric
character in the firstName field and duplicating that code for the lastName, address,
and city fields, you have started a company-specific framework which ensures that no
one else needs to write the code to determine if any NSString contains a numeric
character. In addition to the validateForSave method, the accessor method itself might
contain business logic. For example, the firstName accessor method might look like:

public String firstName() { return firstName; }
public void setFirstName(String value) {

firstName=value.uppercaseString;
}

or, in Objective-C terminology:

- (NSString *) firstName { return firstName; }
- (void) setFirstName:(NSString *) value {

value=[[value uppercaseString] retain];
[firstName autorelease];
firstName=value;
}

In this example, business logic dictates that the first name should be stored as an
uppercase string. By formatting the value directly in the accessor method, all applica-
tions using the object model are ensured of following the business logic definitions.
Obviously, this example is trivial and could be implemented with formatters. More
complex business logic (such as restricting the suffix field to a subset of allowable
values, or running a ZIP code against software to validate it) would be implemented in

Apple Worldwide Developer Relations Design for Reuse 4

5 Appl
a similar manner.

View

The view classes contain reusable code for displaying information to the user. For
example, you might develop a WebObjects component for a login panel. The standard
layout – two text fields, a reset button and a submit button – is not likely to change
much from one application to another. Instead of creating these four elements in the
Main component of every application you develop, you can define them within a
LoginPanel component and include just the LoginPanel on each of your Main pages. To
make the LoginPanel even more generic, the submit and reset buttons might be active
images whose source image is passed as an attribute to the LoginPanel component,
allowing each application a slightly different “look and feel” while still reusing a single
common component.

 For a different type of reuasable view component example, consider a component named
TISSmartString. This component would have an attribute called isEditable and contain
logic to display a WOString if the value of isEditable is NO, or a WOTextField if the value
of isEditable is YES. This component allows user-friendly formatting of text based on the
level of access provided to the current user. Instead of showing a WOTextField to a user
who does not have edit priveleges on the data, this component would display the infor-
mation as regular text, removing any confusion for your users, yet keeping your code
generic.

Obviously, due to the nature of the application interface, view components are not
typically reusable between client-server and web-based user interfaces. Whereas the
model components may be used by any application, reuse of view components is usually
restricted to the interface type of the application that the view component was originally
designed for. Typically, your company will construct a set of reusable components for
WebObjects applications, and a separate set of reusable AppKit components (subclasses of
NSTableView or NSScrollView, for example).

Controller

The controller classes contain application-specific logic which tie the model and view
components together. After the submit button on the LoginPanel component is clicked
and the user entity in the database is checked for validity of the login, which page is
displayed to the user next?

Logic used for navigation of the web site is the most common use for code found within a
WebObjects controller class. But WebObjects controller code is essentially all the logic
contained within your WebObjects script file for the page being displayed (it may be
Objective-C or Java code as opposed to scripted). It is unusual to find page-level logic
that is reusable from one instance to another. If you are able to reuse any of the code

e Worldwide Developer Relations Design for Reuse

 from your page component in multiple other pages or applications, chances are you
have incorporated code that really should be made into a common component.

Application Reuse

Sometimes entire applications are reusable. For example, you are developing a system
which requires a data model with thirty different entities. A dozen or so of these entities
contain lookup information that will be used by one or more applications. You have
identified the need for a web-based table maintenance application. Your object model
already contains the validation logic for each entity, so what you really need is a user
interface to the object model for data entry.

Instead of developing hard-coded pages for each entity to be accessed, you could
structure a very generic application for use with ANY data model. By initializing the
application with a list of entities allowable for data entry, the application could read
the object model “on the fly”, intelligently display a data entry field for each attribute
in that entity and update each attribute appropriately upon submission (see the EOF
Developer’s Guide for more information on this technique). Not only are you eliminat-
ing the need for a separate component to handle data entry for each entity in the
model, but the entire application is reusable from one project’s object model to the
next. Validation logic is handled by the object model itself, and with an exception
handler wrapped around the saveChanges method, any data entry errors can be cleanly
displayed to the user.

Documentation

Documentation and availability of reusable code is ESSENTIAL. So you’ve created this
really cool set of frameworks to do all sorts of good things with strings and date and
numbers. You need to “sell” it to your fellow developers by documenting it well.
Application developers are notorious for “reinventing the wheel”. No one writes code
exactly like the next person, so there is a strong tendency to rewrite code instead of
reuse it. Anobject-oriented development environment only intensifies this problem.
Because the user of a framework doesn’t have access to the implementation of a
method, he or she may not feel comfortable using it. If the documentation is thor-
ough, however, the user’s confidence level in the framework usually rises significantly
and overcomes the rewrite tendency.

Reusable Objective-C code

There are a few “safety tips” to note when writing Objective-C frameworks which will
be used by both WebObjects containing scripted components and non-WebObjects

Apple Worldwide Developer Relations Design for Reuse 6

7 Ap
applications. The first is to always implement your methods to return objects instead of
BOOL, int, float, etc. The scripting language within WebObjects does not support these
simple data types, and you will encounter difficulty using your framework.

Similarly, all method arguments should be objects as opposed to simple data types.
Additionally, the use of (void *) as a data type is not supported by the WebObjects
scripting language and should be avoided in frameworks to be called from script.

Every possible entry point into a common class should be wrapped in an exception
handler in order to enhance WebObjects’ default exception handling mechanism. For
example:

- (void) someMethod {
NS_DURING
{

//-- whatever code, however benign
}
NS_HANDLER
{

//-- some handler code goes here
}
NS_ENDHANDLER

}

The usual rules for code reuse pertinent to development with other programming
languages also apply to programming with Yellowbox/OpenStep and WebObjects. Don’t
assume any particular data size (will int always be 32 bit? No.). Don’t use any platform-
specific functionality in your code (sometimes you have to include certain libraries in the
Makefile for a particular platform). Check your reusable code for memory leaks fre-
quently, and fix any leaks you find immediately.

Conclusion

Obviously, developing reusable code requires thought at the front end of the design. It
also requires a good understanding of other development efforts planned or under way at
your company. The first few projects undertaken may suffer a slight cost or schedule
impact from the time taken to study these issues, but the moderate additional effort is
money well spent in the long run.

Copying and pasting code into ten different applications and finding out later that a logic
error exists in that code, results in spending a significant effort tracking down and fixing
the code that has been replicated. It is a rare company indeed is organized enough to
know exactly where all the copied code has been deployed. If that code had been reused
from a common framework, however, you could update the framework and KNOW that
all occurrences of that error were fixed in a relatively short amount of time.

ple Worldwide Developer Relations Design for Reuse

References

http://gemma.apple.com/techinfo/techdocs/enterprise/WebObjects
WebObjects Developer’s Guide
Enterprise Objects Framework Developer’s Guide
http://www.omnigroup.com/MailArchive/WebObjects
http://www.omnigroup.com/MailArchive/eof
http://www2.stepwise.com/cgi-bin/WebObjects/Stepwise/Sites
ftp://dev.apple.com/devworld/Interactive_Media_Resources
http://www.apple.com/developer
http://developer.apple.com/media
http://enterprise.apple.com/NeXTanswers

About the Author

Theresa Ray is a Senior Software Consultant for Tensor Information Systems in Fort
Worth, TX (http://www.tensor.com). She has worked as a consultant on WebObjects
projects for a wide variety of clients including the U.S. Navy, the United States Postal
Service, America Online, and Proctor and Gamble. Her experience spans all versions
of WebObjects, from 1.0 to 4.0 beta, several versions of EOF, from 1.1 to 3.0 beta,
AppKit, NEXTSTEP 3.1 to OPENSTEP 4.2, Rhapsody for Power Macintosh, and yellow-
box for NT. In addition, she is an Apple-certified instructor for WebObjects courses.

Tensor Information Systems is a Apple partner providing systems integration and
enterprise solutions to its customers. Tensor’s employees are experienced in all Apple
technologies including OPENSTEP, NEXTSTEP, Rhapsody, EOF and WebObjects.
Tensor also provides Apple-certified training in WebObjects, Oracle consulting and
training, as well as systems integration consulting on HP-UX.

You may reach Theresa by e-mail: theresa@tensor.com

Apple Worldwide Developer Relations Design for Reuse 8

http://gemma.apple.com/techinfo/techdocs/enterprise/WebObjects
http://www.omnigroup.com/MailArchive/WebObjects
http://www.omnigroup.com/MailArchive/eof
http://www2.stepwise.com/cgi-bin/WebObjects/Stepwise/Sites
ftp://dev.apple.com/devworld/Interactive_Media_Resources
http://www.apple.com/developer
http://developer.apple.com/media
http://enterprise.apple.com/NeXTanswers
http://www.tensor.com

Think different.http://www.apple.com/developer

Interactive Media Resources
Whether looking for technical guides from
industry experts or for market and industry
research reports to help make critical
business decisions, you’ll find them on the
Interactive Media Resources page.

Apple Developer Connection
Programs and Products
ADC programs and products
offer easy access to technical
and business resources for
anyone interested in devel-
oping for Apple platforms
worldwide. Apple offers three
levels of program participation
serving developer needs .

Membership Programs
Online Program—Developers gain access
to the latest technical documentation for
Apple technologies as well as business
resources and information through the
Apple Developer Connection web site.

Select Program—Offers developers the
convenience of technical and business
information and resources on monthly CDs,
provides access to prerelease software, and
bundles two technical support incidents.

Premier Program—Meets the needs of
developers who desire the most complete
suite of products and services from Apple,
including eight technical support incidents
and discounts on Apple hardware.

Standalone Products

Apple offers many standalone products that
allow developers to choose their own level
of support from Apple or enhance their
Select or Premier Program membership.
Choose from the following products and
begin enjoying the benefits today.

Developer Connection
Mailing—Subscribe to the
Apple Developer Connection
Mailing for the latest in
development tools, system
software, and more.

Technical Support—Pur-
chase technical support and
work directly with Apple’s
Worldwide Developer Tech-
nical Support engineers.

Apple Developer Connection News—
Stay connected to Apple and developer-
specific news by subscribing to our free
weekly e-mail newsletter, Apple Developer
Connection News. Each newsletter contains
up-to-date information on topics such as
Mac OS, Interactive Media, Hardware, Apple
News and Comarketing Opportunities.

Macintosh Products Guide
The most complete guide for Macintosh
products! Be sure to list your hardware and
software products in our free online
database!

Interactive Media
Resources Include:

Interactive Media
Guidebooks

Market Research Reports

Survival Guides—
Technical “How To”
Guides

Comarketing
Opportunities

Special Discounts

As Apple technologies such as QuickTime, ColorSync, and AppleScript
continue to expand Macintosh as the tool of choice for content creators and
interactive media authors, the Apple Developer Connection continues its
commitment to provide creative professionals with the latest technical and
marketing information and tools.

http://developer.apple.com/media
The ultimate source for creative professionals.
© 1998 Apple Computer, Inc. All rights reserved. Apple, the Apple logo, AppleScript, ColorSync, QuickTime, Macintosh and Mac OS are registered
trademarks of Apple computer, Inc. This ad was created using Macintosh personal computers.

Apple
Developer
Connection

Make the
Connection.

Join ADC today!
http://developer.apple.com/

programs

	Design for Reuse
	On-line Technical Documentation
	Model-View-Controller Design Pattern
	Model
	View
	Controller
	Application Reuse
	Documentation
	Reusable Objective-C code
	Conclusion
	References
	About the Author

