
Design for Robustness

by Theresa Ray of Tensor Information Systems, Inc.

Sponsored by Apple Computer, Inc.

Apple Developer Connection

Design for Robustness

by Theresa Ray of Tensor Information Systems, Inc.

A quick reference guide to the major topics involved in designing a

bulletproof WebObjects application including application coding techniques, application

configuration options, multi-platform development and testing.

Developing a robust application for either a web or client-server interface is critical for your business, particularly

with web applications, which are generally developed for use by people outside your company. A web site makes

an impression on its users, in many instances defining the way they feel about your company. Therefore,

developing a robust application is critical to your business.

Application Coding for Robustness
There are several coding techniques that you can use that will enhance the strength of your application. These

include placing commonly used code in a framework, exception handling techniques, memory management

optimization, and management of database connections. Each of these topics is explained below.

Frameworks
As you develop your WebObjects applications, you will probably create several methods or components that are of

a general-purpose nature and are not specific to the application you are developing. There are three ways you can

treat this code. The first way is to put the code “in-line” in the method that requires the function. While this

technique works, it makes it very difficult for other developers to recognize that you have a solution that is, in fact,

generic. It also makes it impossible to reuse the code without cutting and pasting it everywhere that you need it,

even within the same application. This obviously does NOT follow any object-oriented design methodology and

the practice should be avoided.

The second way is to create a method within one of your application’s classes for the code. This technique allows

you to reuse the code from within your application without cutting and pasting it, and on the surface adheres to

object-oriented design methodology. However, this technique still restricts availability outside the current

application and therefore does not follow the true spirit of object-oriented design. If you want to use the same

component or method in another application, you will have to cut and paste it into your other application. Again,

this makes it very difficult for other developers to recognize that you have a generic solution. In addition, every

time you cut and paste into a new application, you have the potential to introduce errors that will have to be

tracked down and fixed.

The third way – the most robust solution – is to add the method or component to a framework. A common

framework can work as a code repository, providing a library of sorts for generic code that can be used by any

number of applications. The code is written and tested once, saving time during the development and debugging

of a new application. While this technique sounds obvious, some developers forget to identify generic components

that they create when developing a new application. Periodic analysis of an application’s code during development

is a good way to discover these generic components.
Apple Worldwide Developer Relations Design for Robustness 1

When creating a framework for common or generic code, you may want to consider developing a

SET of frameworks instead of a single framework. Just as Apple has divided its frameworks into

distinct sets – Foundation, EOAccess, EOControl, WebObjects and so forth – you should divide

your frameworks into logically distinct sets. If you have a neat subclass for NSString and a generic

WebObjects login component, you might want to put these into two different frameworks. This

is particularly important if you ever develop non-WebObjects applications with OPENSTEP

because both the non-WebObjects and WebObjects applications can use the NSString subclass.

For information on how to create reusable components and frameworks, refer to the WebObjects Developer's

Guide and the Survival Guide: on Frameworks .

Exception Handling
When you release your application, there may be times when your application will raise an exception. There are

many reasons why exceptions occur, ranging from errors in the code to a database server that is currently

unavailable or a network failure. The standard exception page presented by WebObjects is meant to aid developers

in the creating and testing of their code – and is NOT meant to be a production-type user-friendly error page. You

will want to replace the default error page with an error page customized for your application. You can even

customize the error page based on the type of exception generated if you so desire.

But before you can return a distinct error page, you need to catch the exception first. There are several ways to

catch an exception in a WebObjects application. Implementation of the first four bullet points is usually sufficient

to produce a robust application.

• The WOApplication class provides a method called handleSessionRestorationErrorInContext that is usually

called because the user’s session has timed out. This method, by default, returns a page with debugging

information. Your subclass of WOApplication can override this method and return a friendlier error that says

something like “We’re sorry, but after a period of inactivity your session has timed out. Please click here to

begin a new session”.

• The WOApplication class provides a method called handleSessionCreationErrorInContext that, by default,

returns a page with debugging information. Your subclass of WOApplication can override this method and

return a friendlier error.

• The WOApplication class provides a method called handlePageRestorationErrorInContext that is usually called

because the user has backtracked too far. This method, by default, returns a page with debugging information.

Your subclass of WOApplication can override this method and return a friendlier error.

• The WOApplication class provides a method called handleException that is called whenever an error occurs

within the request-response loop (in Objective-C, this method is handleException:inContext:). This method,

by default, returns a page with debugging information. Your subclass of WOApplication can override this

method and return a friendlier error.

• You can wrap exception-handling mechanisms around key portions of your code to specifically handle that

exception. For example, when saving changes to the database, you may implement Java code such as the

following to directly handle the failure to save the record successfully:

try {
 this.session().defaultEditingContext().saveChanges();
}

Apple Worldwide Developer Relations Design for Robustness 2

http://developer.apple.com/techpubs/webobjects/System/Documentation/Developer/WebObjects/DevGuide/ReuseTOC.html
http://developer.apple.com/techpubs/webobjects/System/Documentation/Developer/WebObjects/DevGuide/ReuseTOC.html
ftp://dev.apple.com/devworld/Interactive_Media_Resources/WebObjects_Bldg_Custom_Frameworks.pdf.hqx

catch (Throwable exception) {
 // Implement whatever code you want for a failure to
save
 // successfully log, return a different page, etc
}

What you do when you catch an exception depends on the type of exception that was raised. For

a session restoration error, you probably want to display a user-friendly message with a link to a destination that

allows the user to re-enter the site. For a generic error of unknown type (trapped by the handleException method)

you might want to log the error and email the site administrator. Or as in the example above, you can wrap

exception-handling code around key areas of your application and handle the errors on a case-by-case basis.

Memory Management and Application Optimization
Robust applications aren’t just applications those that handle errors properly or that make optimal use of reusable

components. Certain application design techniques may allow a single machine to serve more instances of an

application or to serve each instance of an application more efficiently. First, consider the variables you have

defined at the application level. Are they really generic for the entire application? Do they provide any added value

to the application or are they just flashy? Application variables persist throughout the entire lifetime of the

application, and therefore have a direct impact on the memory footprint of your application.

Second, consider your caching strategies. By default, a WebObjects application caches up to 30 response pages for

a session. This parameter can be disabled or deepened, depending on the needs of your application. Caching

enhances application performance because when a user backtracks to page, it does not need to be recreated from

scratch. A cache size of 30 pages is usually sufficient for most applications. Additionally, by default, a WebObjects

application allows the client browser to cache response pages so that when a user backtracks, the application need

not be contacted at all. If you wish to disable this (using the setPageRefreshOnBacktrackEnabled method), the

retrieved page will only be asked to generate its response. Value extraction from the request and action invocation

is not performed. Use of the permanent page cache can also optimize your application. The WOApplication class

has a method called savePageInPermanentCache that will place the target page into a separate permanent cache

(with its own cache size), effectively caching the page for the duration of the application regardless of your page

cache size. This is useful for components that should always stay cached such as the navigation frame of a multi-

framed application.

Third, write your application in a thread-safe manner, locking any access to shared resources as necessary, so that

you can enable the concurrent request handling capabilities of WebObjects 4.0 and higher by overriding the

allowsConcurrentRequestHandling method to return true.

Fourth, consider your logging strategies for deployment. Logging a certain amount of information from your

application is wise, as it aids in disaster-recovery and debug efforts. But you should log wisely. Make sure that the

information you log is useful. There is usually no need to log all the SQL you generate for the duration of the entire

application. Turning your debug log statements off (using WODebuggingEnabled) before deployment is usually

desirable. Similarly, turning off all trace options is usually desirable. Leaving all the SQL logging, debug logging and

trace logging enabled will quickly consume disk space on your production machine.

Fifth, consider periodically shutting down and restarting your applications. Some applications leak a certain

amount of memory, and periodically terminating and restarting the application allows the memory to be freed. Use

Monitor to gracefully shut down and restart the application by having the application refuse new sessions. When

the number of active sessions reaches zero, you can safely terminate the application without interfering with any

user’s active session.
Apple Worldwide Developer Relations Design for Robustness 3

Sixth, optimize your sessions. If there is a minimal amount of session-level information that you

need to track for your user, you may be configure your application by overriding the WOSession

method setDistributionEnabled so that the user can return to any running instance of your

application as he or she navigates through your site. See “WebObjects Viewed Through Its

Classes” for more information about running a stateless application, or see “Managing State” for

information on alternate stage storage strategies. If your application will be running hundreds of concurrent

sessions, limiting the session level information stored reduces the memory footprint of your application, allowing

one machine to serve more users.

Seventh, because storage of sessions in application memory can consume large amounts of memory over time,

terminate any old sessions in order to free up this memory. This can be accomplished either by overriding the

WOSession method setTimeOut or by calling the WOSession method terminate directly when you know that a

user’s session is finished. Overriding the setTimeOut method allows you to specify the number of seconds that a

session is allowed to be idle before being terminated. Occasionally, you may develop an application that “finishes”

with a user at a well-defined point. For example, if a user came to your application to register for a seminar, after

the registration was complete you may no longer need that user’s session. If this is true, you may message the

WOSession method terminate directly to immediately end the user’s session and free up the memory associated

with that session. If the user backtracks and resubmits any forms, a session restoration exception will be thrown.

Eighth, optimize your components by using standard code optimization techniques. Don’t fetch more information

than you need from the database. Consider prefetching small look-up tables from the database at the application

level so that each session or component doesn’t have to make the round-trip to the database for relatively static,

frequently-used information. When fetching information from the database, be sure to specify a fetch limit in your

fetch specification or WODisplayGroup. This limits the number of rows that can be fetched from the database at

one time, preventing a user from inadvertently fetching an entire table from the database.

Robust Database Connectivity
When a single machine performs both as the application server and the database server, the connection between

application and database rarely drops. When two or more machines are involved, a network problem is usually the

culprit for a dropped database connection. Nevertheless, an application should be able to gracefully handle a

missing database connection. Overriding the WOApplication method handleException will gracefully trap all

database-related errors. But what if you want to try to restore the connection automatically?

WebObjects 4.5 provides just such a capability! See the WebObjects 4.5 documentation for details. For versions of

WebObjects prior to 4.5, it is difficult to robustly implement a solution that automatically reconnects to the

database, but the basic steps are as follows:

1) Iterate over a list of registered database channels (note: may be more than one!). Call both unregisterChannel:

and disconnect.

2) Disconnect and remove obsolete contexts.

3) Have a timer call some fetch mechanism periodically until you time out (fail) or successfully fetch from the

database.

If the attempt fails, you could display a page that informs the user that the database is currently down, and that he

or she should try again later. If the user has submitted a significant amount of data that should be saved to the

database, and you don’t want the user to have to enter all of the information again in a later session, you could

display a page telling them that the database is currently unavailable, and that the application will continue to try for
Apple Worldwide Developer Relations Design for Robustness 4

several minutes to reconnect. Your application could then try to reconnect to the database a set

number of times – raising the exception if the number of times is exceeded without a successful

connection, and continuing with the save operation if a connection is reestablished.

Application Configuration
There are many application configuration options that can affect the robustness of your

application, including the number of threads, queue depth, the number of instances to start, and web server

configuration. A few details are provided here, but you should read the on-line document “ Serving WebObjects ” for

a thorough explanation of each of these topics.

Threads – The default adaptor does multithreaded adaptor I/O and resource handling, but some applications

(particularly those converted from prior WebObjects versions) should be run in a single-threaded manner in order

to be robust. To run adaptor in single-threaded manner, set the WorkerThreadCount to 0.

Listen Queue Depth – The listen queue depth indicates the number of transactions that can be in the socket buffer

(the listen queue) awaiting processing. If the number of transactions in the buffer reach the limit set by the listen

queue depth, the socket refuses new requests. The default depth is five. When an application's request load varies

by period (that is, it experiences "spikes"), you can increase the listen queue depth to improve performance either

by changing the listen queue depth using the Monitor application, or by messaging the WOApplication method

setListenQueueSize.

Auto Recover – Selecting the Auto Recover option in the Monitor application allows your applications to be

automatically restarted if they should crash. The Monitor application keeps track of how many application “deaths”

have occurred and when each “death” occurred, so that you can search your application log files more efficiently for

evidence of what might of caused the “death”. By allowing Monitor to automatically restart your applications, you

keep more instances running simultaneously with less human intervention, increasing your site’s performance and

responsiveness.

Determining the Number of Application Instances to Start – There is not easy answer to the question, “How many

instances of my application should I start?” The answer depends on the average load and peak load that your

application will experience in conjunction with the average and maximum response times of your application. Use

the performance information gathered by the Monitor application, as well as the statistics gathered by the

application to determine the correct number for your application. See the “ Monitoring Application Activity ” section

in the online document “ Serving WebObjects ” for more information about performance and statistics information.

A note regarding web server configuration: while it is beyond the scope of this survival guide to discuss the

configuration options for your web server, you should note that optimization of the application itself does NOT

guarantee a robust web site. You cannot ignore the configuration of the web server used to serve the application.

Read your web server documentation carefully for options you may want to take advantage of to ensure a robust

deployment configuration. For example, most web servers allow you to specify how many web server instances to

start (both minimum and maximum numbers are usually specified). This option allows the web server to start

more instances of itself during peak loading, and to shut down unnecessary instances during quieter periods.

Multi-Platform Development and Deployment
In many cases, it is useful to develop on one platform, and deploy on a different platform. For example, many times

it is convenient to develop on NT and deploy on Solaris or HP-UX. In this kind of configuration, there are useful

custom environment variables that optimize the transition from one platform to another. And the fewer changes

you need to make in transitioning your project between platforms, the fewer opportunities you create for errors to
Apple Worldwide Developer Relations Design for Robustness 5

http://developer.apple.com/techpubs/webobjects/System/Documentation/Developer/WebObjects/ServingWebObjects/ServingWebObjects.html
http://developer.apple.com/techpubs/webobjects/System/Documentation/Developer/WebObjects/ServingWebObjects/ServingWebObjects.html
http://developer.apple.com/techpubs/webobjects/System/Documentation/Developer/WebObjects/ServingWebObjects/ServingWebObjects23.html

creep into your application. Also, if your deployment server ever crashes, you have a design that

can easily be placed on a different machine until your deployment server is repaired.

LOCAL_LIBRARY – This environment variable can be used to specify the directory containing the

installation of any custom frameworks or palettes you may have developed. This location will

vary from project to project. Note that the LOCAL_LIBRARY notion of "install" has nothing to do

with the "install" target defined by the OpenStep Makefiles. The LOCAL_LIBRARY location is intended to provide

an interim, common location for your built development projects so they can live somewhere other than ".". For

example on Solaris, the LOCAL_LIBRARY variable might be set to /LocalLibrary/${LOGNAME}/solaris while on NT

the same variable might be set to D:/LocalLibrary/winnt.

DEVROOT – This environment variable can be used to identify the root development directory. This directory is

usually the common location for code, and will probably contain any global Makefile components. For example on

Solaris, the DEVROOT variable might be set to /developer/Projects/OpenStep/DevRoot while on NT the same

variable might be set to D:/Projects/OpenStep/DevRoot

BLDROOT – This environment variable can be used to set directory where you want your build output to go. If you

don't set it explicitly, the OpenStep Makefiles will use the default value of ".". This can be non-optimal for two

reasons. The first reason is that the build processes for different OpenStep platforms do not generally work and

play well together (i.e. it pays to keep them separated). The second reason is that its noticeably slower to build/link

across NFS mounts than it is to build/link on the local machine. The value of the BLDROOT environment variable

should be set to some directory on your local machine for NT builds, and to some local directory on the PDO

platform of choice for PDO builds. This allows you to keep the builds for the different platforms separated, and

keep the object and executable files on the local machine so the compile/link process is faster. Note that

BLDROOT has nothing to do with the "install" location.

In order to take advantage of these environment variables, the following changes should be made to the project

Makefiles.

Add the following lines to the Makefile.preamble (only add the second line if you have a global preamble created

and specify the appropriate global preamble filename).

INSTALLDIR=$(LOCAL_LIBRARY)/Frameworks
-include $(DEVROOT)/Global.make.preamble

A sample global preamble would include:

GLOBAL_CFLAGS = -g
GLOBAL_INITIAL_TARGETS = update_build_info
BUILD_OUTPUT_DIR = $(BLDROOT)/$(NAME)

###
########
Install directory locations.
###
########

ifeq "Framework" "$(PROJECT_TYPE)"
LOCAL_WINDOWS_INSTALLDIR=$(LOCAL_LIBRARY)/Installed/$(PLATFORM_OS)/Fram
eworks
endif
Apple Worldwide Developer Relations Design for Robustness 6

ifeq "Tool" "$(PROJECT_TYPE)"
LOCAL_WINDOWS_INSTALLDIR=
 $(LOCAL_LIBRARY)/Installed/$(PLATFORM_OS)/Tools
endif

LOCAL_INSTALL_PERMISSIONS = 0755

You may want to create platform-dependent Makefiles for your project and include the appropriate Makefile

automatically. For example, you could add the following line to your Makefile.preamble. If the platform operating

system is HP-UX or Solaris, the MakefileEOF.preamble-$(PLATFORM_OS) would statically link in the necessary

libraries and frameworks for the appropriate database. On NT, you just would not create a MakefileEOF.preamble-

NT since no static linking is required.

-include MakefileEOF.preamble-$(PLATFORM_OS)

Using ProjectBuilder, make use of the LOCAL_LIBRARY environment variable to specify the search path for

framework paths (you will need to make sure that your custom frameworks have been appropriately installed to

this destination).

If you have a global postamble created (you might create one to update a BuildInfo.plist file that contains

information regarding the most recent build), add the following to your Makefile.postamble, specifying the

appropriate global postamble filename.

-include $(DEVROOT)/Global.make.postamble

When transferring a project from NT to UNIX, don’t let any ^M characters sneak into the Makefiles. This can

easily happen when editing on an NT machine across an NFS mounted file system. The ^M characters must be

removed from the Makefiles before proper compilation on UNIX can be performed.

It is a good idea to organize the directory structure around the UNIX "make" utility. Directories and Makefiles can

then be set up in a way that allows "recursive" builds to take place. Basically, if you tell make to make a particular

target it sees that this target gets built both in the directory you're currently in and in all descendant directories too.

This allows you to visit particular branches of the tree, and just build those. For example, if you had a directory

called “Frameworks” that contained three frameworks named “AOLFramework”, “PGFramework” and

“CBFFramework”, typing “make” at the command prompt from within the “Frameworks” directory would make all

three frameworks. Similarly, typing “make clean” at the command prompt from within the “Frameworks” directory

would clean all three frameworks. An example of the Makefile contained within the “Frameworks” directory is

shown below.

all:
 @(cd AOLFramework ; $(MAKE); cd ../PGFramework ; $(MAKE); cd
../CBFFramework ; $(MAKE))
clean:
 @(cd AOLFramework ; $(MAKE) clean ; cd ../PGFramework ; $(MAKE)
clean; cd ../CBFFramework ; $(MAKE) clean)

Testing
Of course one of the most obvious and important means to make your application robust is to TEST IT

THOROUGHLY. Make sure that you budget adequate time and money to test your application before you deploy it.

Beginning at the time that the application specification is developed, create and maintain a proper test plan so that

you can ensure you have tested all the features of your application. The person programming the web site should
Apple Worldwide Developer Relations Design for Robustness 7

NOT be the person to create the test plan, as he or she is too familiar with how the application

works to provide an unbiased point of view. The developer should definitely review and add on

to the test plan, but should not be the primary person to create it.

Similarly, the developer should be the first person to test the application, but others should test

it as well. The people who can provide the best testing of your application are non-technical

people who are completely unfamiliar with the project. They seem to more accurately reflect the type of user who

will visit your site. In addition to the testing they do based on your test plan, they can help identify whether the

navigation of the site makes sense, and will take paths through the site that no developer ever dreamed of using.

Personally, I have found that these types of users will find significant errors in my applications that I had no clue

were there.

Any information being saved to the database should be thoroughly checked for accuracy by more than one person

(ideally not the developer or the tester). It is worth a comprehensive scrubbing before you deploy your

application. There is nothing more annoying or costly than discovering after deployment that you have been saving

erroneous information about your users. In the best circumstance, the erroneous data can be modified by the DBA.

In the worst circumstance, you will not be able to trust the accuracy of any of the records submitted before the

error was caught.

Make sure that all changes to a deployed site are thoroughly tested before release. There are roughly three types of

changes you can make to a deployed site. The first change is a change to an image or to the HTML template. This

change requires minimal testing before release. The second type of change is a change to the application code in a

single class or method that does not affect any data being saved. This change requires moderate testing before

release. The third type of change is a change to a common framework or component, or a change that affects the

data being saved by the application. Due to the extent of this change, the entire test plan should be run again

before releasing this change.

Make use of all testing tools available to you. The online documents “ Serving WebObjects ” and “ What’s New in

WebObjects 4.0 ” discuss the use of the WOPlayback adaptor to performance test your application.

Conclusion
Development of a robust application is essential to the success of your web site. Proper use of the techniques

presented in this guide can assist your efforts to develop an optimized, robust application and system configuration.

Resources…

http://developer.apple.com/techpubs/webobjects

WebObjects Developer’s Guide

Enterprise Objects Framework Developer’s Guide

Enterprise Objects Framework Tools and Techniques (online with developer release)

http://www.omnigroup.com/MailArchive/WebObjects

http://www.omnigroup.com/MailArchive/eof

http://www2.stepwise.com/cgi-bin/WebObjects/Stepwise/Sites

ftp://dev.apple.com/devworld/Interactive_Media_Resources

http://www.apple.com/developer

http://developer.apple.com/media

http://til.info.apple.com/
Apple Worldwide Developer Relations Design for Robustness 8

http://developer.apple.com/techpubs/webobjects
http://www.omnigroup.com/MailArchive/WebObjects
http://www.omnigroup.com/MailArchive/eof
http://www2.stepwise.com/cgi-bin/WebObjects/Stepwise/Sites
ftp://dev.apple.com/devworld/Interactive_Media_Resources
http://www.apple.com/developer
http://developer.apple.com/media
http://til.info.apple.com/
http://developer.apple.com/techpubs/webobjects/System/Documentation/Developer/WebObjects/ServingWebObjects/ServingWebObjects.html
http://developer.apple.com/techpubs/webobjects/System/Documentation/Developer/WebObjects/DeltaDoc/NewInWO4TOC.html
http://developer.apple.com/techpubs/webobjects/System/Documentation/Developer/WebObjects/DeltaDoc/NewInWO4TOC.html

About the Author…

Theresa Ray is a Senior Software Consultant for Tensor Information Systems in Fort Worth, TX

(http://www.tensor.com) . She has programmed in OPENSTEP (both WebObjects and AppKit

interfaces) on projects for a wide variety of clients including the U.S. Navy, the United States

Postal Service, America Online, and Lockheed-Martin. Her experience spans all versions of WebObjects from 1.0 to

4.0, EOF 1.1 to 3.0, NEXTSTEP 3.1 to OPENSTEP 4.2, Rhapsody for Power Macintosh, and yellow-box for NT. In

addition, she is an Apple-certified instructor for WebObjects courses.

Tensor Information Systems is an Apple partner providing systems integration and enterprise solutions to its

customers. Tensor’s employees are experienced in all Apple technologies including OPENSTEP, NEXTSTEP,

Rhapsody, EOF and WebObjects. Tensor also provides Apple-certified training in WebObjects, Oracle consulting

and training, as well as systems integration consulting on HP-UX. And Oracle.

You may reach Theresa by e-mail: theresa@tensor.com or by phone at (817) 335-7770.
Apple Worldwide Developer Relations Design for Robustness 9

http://www.tensor.com

	Application Coding for Robustness
	Frameworks
	Exception Handling
	Memory Management and Application Optimization
	Robust Database Connectivity
	Application Configuration
	Multi-Platform Development and Deployment
	Testing
	Conclusion
	Resources…
	About the Author…

